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Dynamics of DNA in vitro evolution with Mnt-repressor: Simulations and analysis
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The dynamics of DNAin vitro evolution withMnt-repressor has been studied numerically and analytically.
Based on experimental data and realistic energy landscape for DNA-Mnt-repressor interaction, we investigated
the dynamics of DNAin vitro evolution using stochastic simulations. The binding energy of DNA toMnt-
repressor was considered to consist of two parts: the DNA sequence specific and nonspecific. The crossover
observed in real experiments is numerically recovered. We demonstrate that the evolution trajectories are
drastically dispersed and no typical evolution passage exists during the evolution. Particularly, Fisher’s theo-
rem of natural selection is verified. A theoretical analysis for the evolution is also included.
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I. INTRODUCTION

In vitro evolution is becoming an important tool in mo
lecular biology. It is widely used to develop novel protein
DNA, or RNA for special purposes@1–5#. Schematically, an
in vitro evolution is a process of repeated operation cyc
within which reproduction, mutation, and selection proces
take place consecutively. In the case of DNAin vitro evolu-
tion, the reproduction and mutation can be realized by
polymerase chain reaction~PCR!, and the selection can be
binding process where DNA sequences are selected acc
ing to their respective binding affinity to proteins@6# or other
kinds of molecules. In 1990s, a relevant mathematics
developed to provide analytical insight into thein vitro en-
richment process@7,8#. Recently, the dynamics of compet
tive DNA in vitro evolution via protein binding has bee
analytically studied by Penget al. @9#. Based on a continuum
mean-field model, they conclude that interactions betw
mutations and the selection pressure can drive the syste
an asymptotic equilibrium state where the population dis
bution centers at a sequence which can be far away from
best sequence that the protein binds. The first quantita
experimental study on the dynamics of DNAin vitro evolu-
tion was carried out by Dubertretet al. @10#. They studied
the evolution of a random pool of DNA sequences under
selection pressure oflac-repressor and discovered seve
significant dynamical features. One of which is the conv
gence of evolving sequences to the best protein-binding
quence, which has an abrupt change during the evolution
present, the phenomenon has not been explained.

In this paper, we report numerical and analytical stud
of the dynamics of DNAin vitro evolution that occur in rea
situations. In the simplified model of Ref.@9#, the basic hy-
pothesis is that the DNA-protein-binding energy is det
mined simply by the number of nucleotides in the DNA th
are distinct from the best sequence. We here use a m
realistic assumption that takes into account practical featu
the binding energy of DNA sequences to proteins consist
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two parts: the sequence-specific energy and the seque
nonspecific energy. The former part is obtained from the
perimental data@11# and the latter is a parameter in ou
model. Our simulation also tries to mimic the experimen
procedure of DNAin vitro evolution@10#. In each evolution
cycle, a population is amplified by a number of PCR cyc
and diversified simultaneously due to nucleotide mutatio
The amplified population is then introduced to a tube
binding buffer where the protein is fixed on the wall of th
tube. A fraction of DNAs is bound to the protein; they a
then separated and released from the tube. This populatio
DNA is used as the input for the next evolution cycle. W
investigated the dynamics of DNAin vitro evolution by car-
rying out stochastic simulation. The crossover process
served in real experiments is numerically recovered.
demonstrate numerically that the evolution trajectories
drastically dispersed during evolution and there does not
ist any typical evolution pathway. Particularly, Fisher’s the
rem of natural selection is verified in our simulations. A sim
plification for the experimental data is also discuss
theoretically in the context of our model.

II. MODEL

In our numerical model, a population ofN random DNA
sequences, each consisting ofL nucleotides is first prepared
The sequences are then subject toI cycles of duplication,
with a small error raten0 ~typically in a magnitude of 1024)
per nucleotide when duplicated. The selection is fulfill
through an equilibrium reaction:S1MR
S-MR, whereS
5b1b2•••bL is a DNA sequence of nucleotidesbi , bi rep-
resents A, C, G, or T. MR represents theMnt-repressor;
S-MR is the DNA-protein complex. Under the assumptio
that a protein can never be occupied by more than one D
sequence at a time, the binding probability of a sequencS
by Mnt-repressor molecules has a form of Fermi function@9#,

P~S,m!5
1

11expS 2ES2m

kBT D , ~1!
d-
©2003 The American Physical Society03-1
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TABLE I. Experimental data forai ~defined as«b
i*
2«bi

) of nucleotide A,C,G,T in the position ofi of

sequenceS5b1b2•••bL @11#. The best binding sequence is symmetric about positioni 59. Because of this
and that theMnt-repressor is a tetramer of identical monomers, the data in the table is also symmetri~half
data shown!. For example,a150.27 for nucleotide A at positioni 51, the nucleotide T ati 517 also has the
valuea1750.27.

b\ i 1 2 3 4 5 6 7 8 9

A 0.27 0.76 2.36 0.67 2.36 2.36 0.0 3.2 0.74
C 1.3 1.1 3.37 1.21 0.0 0.0 1.67 0.0 0.0
G 0.0 0.0 0.0 0.32 2.19 4.38 2.02 2.53 0.0
T 1.2 0.81 2.19 0.0 1.06 1.67 2.53 1.85 0.74
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wherekB is Boltzmann constant,m is the chemical potential
andES is the binding energy ofS to Mnt-repressor. Therefore
2ES is the free energy of the complexS-MR ~we assume
that the free energy of freeSbe 0). The chemical potential i
a selection threshold. An increase inm lowers the threshold
so that sequences with small binding energies are also li
to be selected. Practically, the chemical potentialm depends
on the environment of DNA-protein binding. It can be co
trolled by the number of available proteins and the choice
the binding buffer.

We assume thatES consists of two parts, i.e., specifi
binding energy«s and nonspecific binding energy«0:

ES5«s1«0 . ~2!

«s is determined by the binding details of the sequenceS to
Mnt-repressor, and therefore depends of specific nucleot
bi in S. «0 is independent of specific sequences, which r
resents the contribution of the Coulomb interaction to
DNA-protein-binding affinity. It is identical for any possibl
sequence ofL bases, and is a constant in our model. As it h
been previously proved to be a good approximation for
Mnt-repressor system@12#, we further assume that eac
nucleotide in the sequence contributes to the specific bind
energy«s independently, i.e.,«s5( i 51

L «bi
, where«bi

is the

energy contribution of the nucleotidebi in the S sequence.
Practically, the binding energy«s cannot be determined di
rectly in experiment. However, if we appoint arbitrarily
sequence of nucleotidesS* 5b1* b2* •••bL* as a reference
then the discrepancy in binding energy ofS* from any se-
quence S, that is, «s* 2«s[as with as[( i 51

L ai and ai

[«b
i*
2«bi

, can be measured experimentally by the a

proach of point mutation@11#. An equivalent form of
the specific binding energy«s can then be written as«s

5«s* 2as5( i 51
L («b

i*
2ai). In our model, we choose th

DNA sequence that has the highest binding ene
to Mnt-repressor as the reference. It readsS*
5GGGTCCACGGTGGACCC. This sequence is symme
cal about the central baseb9* 5G in the sense that base
matches base C and base A matches base T. Actually, r
ence sequenceS* is the target of thein vitro evolution of
Mnt-repressor. For this reference, the experimentally m
sured energy discrepancyai for all possible base matches o
bi* with si are listed in Table I@11#. For all possible types o
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sequences withL bases, we calculated the landscape, i.e.,
distributionV(as) of as , as depicted by squares in Fig. 1.
is obtained by calculating the number of DNAs that ha
their as fall in the range@as ,as1Das# in the total 4L varia-
tions of sequences.

Let a05«s* 2«0. In our model, we make an approxima
tion for the total binding energy by ignoring the smaller pa
of «0 or «s in ES . ES thus has the following form:

ES5H «s if «s.«0

«0 if «s<«0 .
~3!

This assumption is supported by previous experimental fi
ings. Careful experiments withlac-repressor showed that th
sequence-specific binding energyES can be replaced by the
nonspecific energy«0 if the DNA sequence is sufficiently fa
from the bestS* sequence@13–15#. By taking Eq.~3!, we
have taken into account the effect of nonspecific bind
affinity, which has been ignored in the model of Ref.@9#. In
the selection probability, Eq.~1!, we have three parameter
«s* , a0, andm. Denoteme f f5«s* 1m, two independent pa-
rametersa0 and me f f are left in the selection probability
which has the following form:

FIG. 1. The histogram of energy landscapeV(as) calculated
from Table I ~the squares! and its coarse grainv(m) calculated
from Eq. ~11! ~solid line!. V(as) andv(m) represent the numbe
of possible types of sequences whoseas ~refer to the text for its
definition! fall in the range@as , as1Das]. Das for the histograms
is 0.78kBT.
3-2
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P~S,m!55
1

11expS aS2me f f

kBT D if aS,a0

1

11expS a02me f f

kBT D if aS>a0 .

~4!

As the Appendix shows,me f f5kBT ln(KS*cMf), whereKS* is
the binding constant of the best sequenceS* andcM f is the
concentration of freeMnt-repressor in the equilibrium state
Ks* is affected by the reaction temperatureT and pH value,
and has a magnitude typical of 1011 M21 @16#. cM f is deter-
mined bycM f1(SP(S,m)cSt5cMt , wherecSt andcMt are,
respectively, the concentration of total DNA andMnt-
repressor. The dependence ofcM f on cSt ,cMt , andKs* is in
fact complicated and is not the interest of this study.
simply assumecM f'cMt , which is achieved whencMt
@(ScSt . Suppose the reactive buffer and the number of to
Mnt-repressor remain unchanged during the experiment,me f f
is a constant in the evolution process. Practically,Mnt-
repressor concentration can vary from 10211 M to 1027 M
@11,16#, with KS* '1011 M21 @16#, the correspondingme f f

ranges from 0 to 10kBT.
Using the above model, we carried out stochastic simu

tions of thein vitro evolution. Except otherwise stated, th
model parameters were chosen as the following:N5106, L
517, n051024, andI 510. The temperatureT was fixed at
300 K which was typical in real experiment. In the simul
tion, we first generated 106 random DNA sequences of 1
nucleotides, with each base having an equal probability to
A,C,G, or T. The DNA population was then amplified 100
times ~10 cycles of ‘‘PCR’’!. At each run of duplication, we
generated a random number which is uniformly distribu
in @0,1# for each nucleotide in all DNA. If the number is les
thann0, then a mutation takes place on this nucleotide;
nucleotide was altered to other three different nucleoti
with equal probability. Otherwise, the nucleotide was ke
unchanged. After 10 cycles of PCR, a selection was m
with each available sequence being selected according to
selection probability, Eq.~4!. In order to recover the initia
population, 106 sequences were random sampled from
selected pool. With a proper washing condition, this proc
can be realized in experiments by using a part of selec
samples instead of all selceted samples. We investigated
dynamics of in vitro evolution by carrying out the abov
duplication-and-selection processes numerically.

III. SIMULATION

We scan the parametersa0 in @4kBT,40kBT# andme f f in
@0,10kBT#. Starting from a population of random sequenc
the evolution always has a single destination: It always c
verges to the state in which most DNAs in the population
of S* -type sequence.

To characterize the dynamics of the DNA population d
ing evolution, we need to define a few parameters. First,
distance of a sequenceS5b1b2•••b17 to the final S*
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5GGGTCCACGGTGGACCC sequence. We count the nu
ber of nucleotides inS which are different fromS* and de-
note it with r. The state of the population at the end oft
cycles of duplication-mutation-selection can be roughly ch
acterized by the distance distributionn(r ) as a function ofr
in the population.n(r ) describes how many sequences ha
the distancer to theS* sequence in the population. Secon
we denote the fraction thatS-type DNA occupies in the
population at timet with f (S,t). Also, for a better character
ization of the population during evolution, we introducea(t)
andb(t):

a~ t ![(
S

P~S,m! f ~S,t !,

b~ t ![
a~ t !

a~ t21!
. ~5!

a(t) is the averaged binding probability of the populatio
while b(t) is a measure of the changing rate of the avera
binding ability, becauseb(t)21 is exactly the changing rat
of a(t).

By adjusting the parameters ofme f f and a0, we observe
two types of dynamics: crossover and noncorssover. Typ
crossover and non-crossover processes are shown in
2~a! and 2~c!, respectively. They show the distance distrib
tion n(r ) of the population at different evolution timet. One
notes that in a crossover process@Fig. 2~a!#, there is a sudden
change of the distributionn(r ) during the evolution, reveal-
ing a sudden fast decrease in the average distance in
population. On the other hand, in a noncrossover case,
distance distributionn(r ) evolves steadily. Our calculation
shows that withme f f in the range of 0 and 10kBT, if a0

FIG. 2. The time evolution of distance distributionsn(r ) for
typical simulation runs that exhibit the phenomenon of crosso
~a! and noncrossover~c!. The symbolsh, *, L, 1, andd repre-
sent the timet50, 1, 2, 3, and 4, respectively. In~a!, the distribu-
tion n(r ) at t53 makes a jump to the state oft54; while in the
noncrossover case~c!, n(r ) evolves smoothly.~b! and~d! depict the
time dependence of the mean selection probabilitya and its grow-
ing rateb for the runs of~a! and~c!, respectively. The crossover i
best manifested by the peak of the curve forb. Other control pa-
rameters are:me f f50, a057kBT for ~a! and ~b!; me f f50, a0

540kBT for ~c! and ~d!.
3-3
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<12kBT, a crossover takes place; ifa0>14kBT, smooth
evolution ~noncrossover! occurs; and if a0
P@12kBT,14kBT#, the occurrence of the crossover strong
depends on the chemical potentialme f f : the crossover take
place only if me f f is larger than a certain lower limit valu
that is determined by the value ofa0. Figure 2~b! shows the
corresponding time dependences ofa(t) andb(t) in a cross-
over case. Att50, the initial random DNA population ha
an average distance of 13.0. Duringt51 and 2,b(t) grows
very fast and the fraction of the sequence having four diff
ent bases toS* sequence is found to grow abruptly in th
population. However, these sequences are still in a mino
~less than 1% in the population!. At t53, they become quite
considerable in number~around 30% in the population!. In
the meantime, the average distance drops to 10.0. After
event,b(t) undergoes a sudden drop whilea(t) still grows
steadily. This crossover process, best demonstrated by
peak of thet;b(t) curve, can be found in a large range
parameters. The result of the simulation is consistent with
real DNA in vitro evolution experiments of Dubertretet al.
@10#. Their experiment revealed an abrupt decrease in
average distance at the end of 5 cycles of PCR-muta
selection, and the average distance drops suddenly from
3. In contrast with Figs. 2~a! and 2~b!, Figs. 2~c! and 2~d!
show a noncrossover situation whena0540kBT. In this
case,b(t) decreases monotonously without any abrupt
havior. Since sequenceS* has the largest selection probab
ity P(S* ,m), the final evolution result is still a population o
S* sequence, so thata(t)/P(S* ,m) always approaches t
1.0 as time proceeds.

The characteristic time of crossovertc , defined as the

FIG. 3. The contour lines of characteristic crossover timetc in
the space of control parametersme f f2a0 obtained from simulations
~a! and theory~b!. ~c! and ~d! show the dependence oftc on a0

~with me f f50) and me f f ~with a057kBT), respectively. Circles
represent simulations and solid lines represent theory. The the
ical result is produced by calculating]b(t)/]tu tc

50.
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time when the peak oft;b(t) curve appears, is found to b
affected by both parameters ofme f f and a0. Usually, for
certain values ofme f f anda0, different simulation runs have
different values oftc . We thus calculate the mean (t̄ c) of tc

on a number of simulation runs. The dependence oft̄ c on
me f f and a0 is summarized in Fig. 3~a!, where the contour
lines of t̄ c in me f f-a0 space are plotted. The contour line
t̄ c52 distinguishes crossover and noncrossover evolu
processes. Crossover appears ift̄ c>2; it becomes noncross
over if t̄ c51. The figure indicates thatt̄ c is a decreasing
function of a0 and an increasing function ofme f f . Figures
3~c! ~circles! and 3~d! ~circles! clearly demonstrate such tw
effects.

From different simulation runs carried out with variou
values ofme f f anda0, we recognized two qualitatively dif-
ferent types of trajectories. As shown in Fig. 4~a!, the evolu-
tion path of the solid line is a of gradual changing trajecto
typically found in our simulations. It indicates that the ave
age selection probabilitya(t) in the population is a stead
growing function of time. The other type of typical run
represented by the dashed line in Fig. 4~a!. It shows that the
evolution process is divided into three slowly changing p
nar stages alternated with two fast growing stages. A
growth in a(t) is typically preceded by a stagnant proce
We calculated the time dependence ofd(t), i.e., the relative
standard deviation ofP(S,m) at time t in the population.
Figure 4~b! shows the curves ofd(t) for the two typical runs

et-

FIG. 4. Typical examples of two qualitatively different simula
tion runs found in stochastic simulations@the solid and dashed line
in ~a! and~b!#. The dependence ofb on the standard deviationd of
the selection probabilitya that follows Fisher’s theorem of natura
selection~c!. The simulation result~squares! agrees very well with
the function b511d2 ~solid line!. Parameters:me f f50 and a0

57kBT.
3-4
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in Fig. 4~a!. Both are drastically undulant curves that exhi
frequent convergence and divergence in the population. T
is the typical dynamical pattern we find in thein vitro evo-
lution processes.

Biologically speaking, the selection probabilityP(S,m) is
a measure of fitness of an organism to the environment,
a represents the mean fitness of the population. The stan
deviationd of a in the population is actually an indicator o
the diversity in the population. As early as over 90 years a
Fisher discovered a fundamental theorem of natural selec
in evolutionary biology:The rate of increase in fitness of an
organism at any time is equal to its genetic variance in
ness at any time@17#. This biological law has been recovere
in our numerical simulations ofin vitro evolution. Figure
4~c! shows that the changing rate ofa at any instance of time
is just the square of the diversityd or the variance of the
fitness. The open squares in the figure are results of sim
tion and the solid line represents the functionb511d2.
They agree very well.

We now fix the valuesme f f50 anda057kBT and inves-
tigate the statistical properties of an ensemble of simula
runs. Two-hundred different realizations of simulations a
conducted. For each simulation run, the initial population
prepared by randomly selectingN sequences from the poo
of 4L DNAs. Figure 5~a! shows the evolution trajectories o
the ensemble in terms ofa(t). The paths start from a sma
regime that lies a little above zero ina and terminate with a
convergence toa51. During their evolution processes, th
trajectories distribute, however, very diversely. There d
not exist any typical evolution passage where trajecto
keep close together during evolution. To complete the jo
ney from an initial condition, a quick run requires only abo
ten duplication-mutation-selection cycles in order to ha
90% of the DNAs in the population to beS* -type sequence
while a slow run needs about 100 cycles to cover the journ
The dispersionD(t) or standard deviation ofa(t) in the
ensemble at a few sampled times are listed in Table II (D1);
D(t) has a small value of 0.00016 att50, indicating that the
trajectories keep close initially. Att52, D(t) grows to 2.6
and the paths have been randomly dispersed. Fromt55 to
100, D(t) decreases gradually to a very small value and
system gradually converges to the optimalS* sequence. For
the purpose of comparison, the ensemble of evolution r

FIG. 5. Forty evolution trajectories selected arbitrarily from
ensemble of 200 simulation runs. They evolve from 40 differ
random initial DNA populations~a! and from an identical initial
population~b!, respectively. Parameters are the same as in Fig.
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were also simulated from a completely identical initial ra
dom DNA population. Figure 5~b! gives the results. Trajec
tories in the figure are still dispersed, but the extent is mu
less drastic than that of Fig. 5~a!. Again no typical passage
exists. From Figs. 5~a! and 5~b!, we deduce that the dispe
sion degree in the evolution trajectories comes from the
versity of initial conditions and the randomicity of DNA mu
tations. The dispersion ofa(t) for this case is also listed in
Table II (D2).

We finally check the effects of system sizeN and the
mutation raten0. To characterize a simulation run, the ev
lution time te defined as the number of evolution cycle
needed for 90% DNAs in the population to become the tar
S* sequence, is calculated. At a parameter configuration,

mean ofte , i.e., t̄ e , is calculated for a number of simulatio
runs. Figure 6~a! shows the effects ofN on t̄ e . One observes
that the size effect is significant whenN is small. There is a
characteristic sizeNc , below whichte blows up. The reason
is that when the system is too small, the probability for s
quences withas,a0 to appear in an initial population is
slim, and the system has to wait a long time for these
quences to be produced through a small mutation rate.
N; t̄ e dependence has a long tail andt̄ e converges at the
limit of large system size. The effect of mutation rate ont̄ e is
depicted in Fig. 6~b!. At small values ofn0 , the system usu-
ally needs over several hundred or even higher number
duplication-mutation-selection cycles in order to attain to
S* -sequence-dominant state. However, the effect of the
tation raten0 is not so significant whenn0.1027 in the
range of parameters that we checked.

TABLE II. The standard deviationD of the mean selection
probability a in the ensemble at a few sampled times.D1 denotes
the case when the ensemble evolves from different random in
DNA populations andD2 is the situation where the ensemb
evolves from an identical initial population. Parameters are
same with Fig. 5.

D\t 0 2 5 10 20 100

D1 0.000 16 2.6 0.83 0.35 0.16 0.016
D2 0.0 0.0096 0.28 0.13 0.10 0.0002

t

.

FIG. 6. Effects of the system size~a! and the mutation raten0

~b! on the average evolution timete . Parameters:n051024 for ~a!
andN5106 for ~b!. Other parameters are the same as in Fig. 4
3-5
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IV. ANALYSIS

We now give a theoretical analysis of the evolution d
namics of our model. In fact,N5106 means that the bes
sequenceS* has a small probability of 1024 to appear in
starting pool. For simplicity, we argue thatN5106 is suffi-
ciently large to contain sequences with different energy le
and small mutation raten0 has insignificant influence on th
population distribution of the DNA pool in the first sever
cycles. Thus we consider the limitn050 and N 5`. We
denote the summation@g# t5(Sg(S) f (S,t), whereg(S) is
an arbitrary function ofSsequence and the sum is carried o
over all possible types of sequences in a population@refer to
the text that precedes Eq.~5! for f (S,t)]. Since there are
only selections and no mutation takes place in the evolut
the sequence distribution functionf (S,t11) at time t11
can be calculated from the distributionf (S,t) at t:

f ~S,t11!5
P~S,m!

@P# t
f ~S,t !. ~6!

From the recurrence formula,f (S,t) can be expressed in th
initial distribution f (S,0),

f ~S,t !5
@P~S,m!# t

@Pt#0

f ~S,0!. ~7!

The forms ofa(t) andb(t) defined in Eq.~5! can be readily
obtained from Eq.~7!,

a~ t !5
@Pt11#0

@Pt#0

, ~8!

b~ t !5
a~ t !

a~ t21!
5

@Pt11#0@Pt21#0

~@Pt#0!2
. ~9!

Initially the fraction that any type of sequenceS occupies in
a population is uniform since the system size is infinite, a
we have f (S,0)51/4L. From the selection probability, Eq
~4!, we have

@Pt#05
1

4L S (
as,a0

V~as!nas

F11expS as

kBTD G t

1 (
as>a0

V~as!nas

F11expS a0

kBTD G tD . ~10!

Apparently, the mean@Pt#0 are determined by the landscap
V(as) and parametersa0 . V(as) is actually the energy den
sity distribution for the initial population. The sum in Eq
~10! consists of two parts:a,a0 anda>a0.

In order to obtain an analytical form forb(t), the experi-
mental landscape shown in Fig. 1 should be approxima
analytically. We make a coarse-grain for the experimen
03190
-

l,

t

n,

d

d
l

data in Table I. We divide all the types of free energiesai
(ai5«b

i*
2«bi

) contributed possibly by a nucleotide in a s

quenceSuniformly into four classes.ai can only take values
of 0, e, 2e, or 3e. In accordance with data in Table I, w
take e50.78kBT. For a sequenceS that hasl 0 nucleotides
with ai50, l 1 nucleotides withai5e, l 2 nucleotides with
ai52e, and l 3 nucleotides withai53e, while l 01 l 11 l 2
1 l 35L. The sequenceS thus has the free energyas[me
5( l 112l 213l 3)e. The number of all possible types of se
quences that satisfyas5me can be calculated to be

v~m!5 (
l 350

[m/3]

(
l 25max(0,m2L22l 3)

min$L2 l 3 ,[(m23l 3)/2]%

CL
l 3CL2 l 3

l 2 CL2 l 32 l 2

m23l 322l 2,

~11!

where the bracket@ # is the operation of taking the intege
part of a real number. The landscapev(m) is the approxi-
mation ofV(as). As depicted in Fig. 1, the solid curve fo
v(m) agrees well with the squares of experimental data
V(as).

By virtue of Eqs.~10! and~11!, b(t) can be finally com-
puted. By adjusting the parametersme f f anda0, we find that
the crossover phenomenon observed in our simulati
shows up with small values ofa0. Figure 7~a! demonstrates
such an example. The solid curve is the theoretical res
and the dashed line is calculated by averagingb on a bound
of simulation runs. The characteristic crossover time~i.e., tc ,
the time the peak locates! predicted by theory also agree
well with the simulations. Figure 7~b! depicts the case of the
situation without crossover whena0 takes large values (a0
.12kBT). The crossover timetc can be also determined b
]b(t)/]tu tc50. On the basis of Eqs.~9!–~11!, the depen-

dence oftc on me f f anda0 was calculated, as shown in Fig
3~b!. The contour lines oftc qualitatively agree with simula-
tions @Fig. 3~a!#. The solid lines of theoretical prediction i
Figs. 3~c! and 3~d! are consistent with numerical simulation

Fisher’s theorem of natural selection can be readily
rived with n050. We consider that the population is larg
enough. At timet, the fraction of sequenceS in the popula-
tion is proportional toP(S,m) f (S,t21), that is,

FIG. 7. Theb;t correspondence from simulation~dashed! and
theory~solid!. Theoretical result in~a! also manifests the crossove
phenomenon found in simulations. The results of simulation
calculated by taking an average over 200 runs. Parameters:me f f

50, a057kBT for ~a!; me f f50, a0540kBT for ~b!. Other param-
eters are the same as in Fig. 4.
3-6



he

ng

A
-

ia
s
a
r t
di
an
f
o

ig
ve
v

tio
h
re

er

ic

s
for
ex-

the
ent
ely

hat
ere
ries
tion
se-
ific
ape
mp-
the
of
ess
ed

e

s
of

DYNAMICS OF DNA IN VITROEVOLUTION WITH . . . PHYSICAL REVIEW E68, 031903 ~2003!
f ~S,t !5kP~S,m! f ~S,t21!, ~12!

where k is the coefficient. We integrate both sides of t
above equation with respect toS and arrive at

k(
S

P~S,m! f ~S,t21!5ka~ t21!5(
S

f ~S,t !51.

~13!

We havek51/a(t21) and get the expression forf (S,t),

f ~S,t !5
P~S,m! f ~S,t21!

a~ t21!
. ~14!

Therefore the mean binding probability takes the followi
form:

a~ t !5(
S

P~S,m! f ~S,t !5

(
S

P~S,m!2f ~S,t21!

a~ t21!
.

~15!

From the expression ofa(t), it is easy to prove that

b~ t !511

(
S

@P~S,m!2a~ t21!#2f ~S,t21!

a~ t21!2

511d2~ t21!. ~16!

d2 is the variance ofP(S,m) and b215d2(t21) is just
Fisher’s theorem of natural selection.

V. DISCUSSION

We have investigated the dynamics of competitive DN
in vitro evolution with Mnt-repressor numerically and ana
lytically. The selection strength of the chemical potent
me f f is regarded as an invariant during the evolution proce
which is a practical case when the protein molecules
excessively present. Based on the experimental data fo
sequence-specific binding energy and the correspon
landscape, the evolution process were simulated. By ch
ing the selection strengthme f f within the practical range o
@0,10kBT#, we demonstrated that the crossover process
served in the experiment@10# can take place only whena0 is
smaller than 14kBT. In fact, a small value ofa0 represents a
case where nonspecific binding energye0 is dominant. With
large a0, the contribution of nonspecific energy can be
nored, only specific energy takes effect. These results re
that the nonspecific energy is responsible for the crosso
phenomenon. Qualitatively speaking, the bigger the por
of initial sequences with nonspecific binding energy, t
easier the occurrence of crossover. It suggests that in
experiments, the energy discrepancy of nonspecific en
«0 to the best specific energy«S* might be at most 14kBT.
We compare this magnitude evaluation with previous pred
tion @18#. In Ref. @18#, Gerland et al. proposed thatES*
03190
l
s,
re
he
ng
g-

b-

-
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er
n
e
al

gy

-

2«0'kBT ln(G), whereG is the size of genome that contain
the DNA sequence. This relation was proved to be correct
all cases where nonspecific energy has been measured
perimentally. In this light,ES* 2«0'16kBT for Mnt because
the Samonellagenome size is'53106. Together withES*
'25kBT for KS* ;1011M 21 @16#, one can calculate thata0
5«S* 2«05ES* 22«052(ES* 2«0)2ES* '7kBT, which
quantitatively agrees with our prediction. Whena0 is prop-
erly set, we showed that the crossover can take place in
first few evolution cycles, as was observed by experim
@10#, with a strong selection force that can be quantitativ
controlled by protein concentration.

With an ensemble of simulation runs, it was revealed t
the evolution trajectories are drastically dispersed and th
do not exist typical evolution passages where the trajecto
keep close together. We thus speculate that diversifica
must be the key of the dynamics of evolution. With a coar
grained simplification for the experimental data of spec
binding energy, we obtained a simplified energy landsc
for the system. Based on this simplification and the assu
tion that small mutations do not have a major effect on
population distribution of the DNA pool, Fisher’s theorem
natural selection, which states that the growth rate of fitn
of an organism is exactly its variance of fitness, is verifi
and put in an analytical expression@Eq. ~16!#. This analytical
formula is quantitatively consistent with the result of th
computer simulation.
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APPENDIX

When the reactionS1MR
S2MR attains the equilib-
rium state, we haveKS5cSb/(cS fcM f), where KS is the
binding constant of S,cSb, cS f , and cM f are, respectively,
the concentration of bindingSS, free S, and free Mnt-
repressor. WithcSb/cS f5KScM f , the selection probability
has the form

P~S,m!5
cSb

cS f1cSb
5

1

11~KScM f !
21

• ~A1!

Using the relationKS}exp(ES/kBT), we have

KS5KS* expS ES2ES*
kBT D5H KS* expS 2aS

kBT D if aS,a0

KS* expS 2a0

kBT D if aS>a0.

~A2!

So that the final form ofP(S,m) is
3-7



P~S,m!5

1

11~KS* •cM f !
21expS aS

kBTD 5
1

11expS aS2kBT ln~KS* •cM f !

kBT D if aS,a0

1
5

1
~A3!

YANG, WANG, AND OUYANG PHYSICAL REVIEW E 68, 031903 ~2003!
5
11~KS* •cM f !

21expS a0

kBTD 11expS a02kBT ln~KS* •cM f !

kBT D if aS>a0

in which kBT ln(KS*cMf) is exactlyme f f of Eq. ~4!.
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