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Dynamics of DNAin vitro evolution with Mnt-repressor: Simulations and analysis
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The dynamics of DNAN vitro evolution withMnt-repressor has been studied numerically and analytically.
Based on experimental data and realistic energy landscape for lDhiAepressor interaction, we investigated
the dynamics of DNAIn vitro evolution using stochastic simulations. The binding energy of DNMtd-
repressor was considered to consist of two parts: the DNA sequence specific and nonspecific. The crossover
observed in real experiments is numerically recovered. We demonstrate that the evolution trajectories are
drastically dispersed and no typical evolution passage exists during the evolution. Particularly, Fisher’s theo-
rem of natural selection is verified. A theoretical analysis for the evolution is also included.
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[. INTRODUCTION two parts: the sequence-specific energy and the sequence-
nonspecific energy. The former part is obtained from the ex-

In vitro evolution is becoming an important tool in mo- perimental datg11] and the latter is a parameter in our
lecular biology. It is widely used to develop novel proteins, model. Our simulation also tries to mimic the experimental
DNA, or RNA for special purposeld—5]. Schematically, an Procedure of DNAin vitro evolution[10]. In each evolution
in vitro evolution is a process of repeated operation cycle§ycle, a population is amplified by a number of PCR cycles
within which reproduction, mutation, and selection processeg@nd diversified simultaneously due to nucleotide mutations.
take place consecutively. In the case of DiAvitro evolu- ~ The amplified population is then introduced to a tube of
tion, the reproduction and mutation can be realized by th&inding buffer where the protein is fixed on the wall of the
polymerase chain reactidfPCR), and the selection can be a tube. A fraction of DNAs is bound to the protein; they are
binding process where DNA sequences are selected accorien separated and released from the tube. This population of
ing to their respective binding affinity to proteif§] or other ~DNA is used as the input for the next evolution cycle. We
kinds of molecules. In 1990s, a relevant mathematics wa#vestigated the dynamics of DN vitro evolution by car-
developed to provide analytical insight into thevitro en-  rying out stochastic simulation. The crossover process ob-
richment proces$7,8]. Recenﬂy, the dynamics of Competi_ served in real experiments is numerically recovered. We
tive DNA in vitro evolution via protein binding has been demonstrate numerically that the evolution trajectories are
analytically studied by Penet al.[9]. Based on a continuum drastically dispersed during evolution and there does not ex-
mean-field model, they conclude that interactions betweefst any typical evolution pathway. Particularly, Fisher’s theo-
mutations and the selection pressure can drive the system f8m of natural selection is verified in our simulations. A sim-
an asymptotic equilibrium state where the population distri-Plification for the experimental data is also discussed
bution centers at a sequence which can be far away from tH&eoretically in the context of our model.
best sequence that the protein binds. The first quantitative
experimental study on the dynamics of DNiAvitro evolu-
tion was carried out by Dubertret al. [10]. They studied Il. MODEL
the evolution of a random pool of DNA sequences under the In our numerical model, a population df random DNA

selection pressure dac-repressor and discovered several - , o
P b sequences, each consistinglofucleotides is first prepared.

;g:ézciptesglr\]/?r:gCsae!cjﬁgalgeessItc?tnhee %fevsvp ;acrr:)tlsir?tincdoiggesr-e-[he sequences are then subjectl toycles of duplication,
guence, which has an abrupt change during the evolution. AvtvIth a small error rate (typically in @ magnitude of 10)

present, the phenomenon has not been explained per nucleotide when duplicated. The selection is fulfilled

; X . . _through an equilibrium reactiorB+ MR=S-MR, whereS
In this paper, we report numerical and analytical studies

of the dynamics of DNAN vitro evolution that occur in real r:egél;%s ) AbLC'S g DONrATse'f]/IuRer;cée gsgrl:ge?ht‘!gﬁé briersirc);r'
situations. In the simplified model of Rd®], the basic hy- SMR is tr,Ie DNA rotéin com FI)ex Under the azsum tion
pothesis is that the DNA-protein-binding energy is deter- P pex. P

mined simply by the number of nucleotides in the DNA thatthat a protein can never b(_e oc_:cup|ed by_m‘”e than one DNA
are distinct from the best sequence. We here use a mo S guence at a time, the binding probability of a sequéhice
realistic assumption that takes into account practical feature y Mnt-repressor molecules has a form of Fermi funcfigh

the binding energy of DNA sequences to proteins consists of
1

| P(Sip)= —=— ®
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TABLE I|. Experimental data fom; (defined as;bi*—sbi) of nucleotide A,C,G,T in the position aofof
sequenceS=h;b,- - -b, [11]. The best binding sequence is symmetric about positie@. Because of this
and that theMnt-repressor is a tetramer of identical monomers, the data in the table is also synifradfric
data showh For examplea;=0.27 for nucleotide A at position= 1, the nucleotide T at=17 also has the
valuea;;=0.27.

b\i 1 2 3 4 5 6 7 8 9

A 0.27 0.76 2.36 0.67 2.36 2.36 0.0 3.2 0.74
C 13 11 3.37 1.21 0.0 0.0 1.67 0.0 0.0
G 0.0 0.0 0.0 0.32 2.19 4.38 2.02 2.53 0.0
T 1.2 0.81 2.19 0.0 1.06 1.67 2.53 1.85 0.74

wherekg is Boltzmann constanj is the chemical potential, sequences with bases, we calculated the landscape, i.e., the
andEg is the binding energy dbto Mnt-repressor. Therefore distribution()(as) of a5, as depicted by squares in Fig. 1. It
—Es is the free energy of the compleé&MR (we assume is obtained by calculating the number of DNAs that have
that the free energy of fre@be 0). The chemical potential is their a, fall in the rangd as,as+ Aa.] in the total 4 varia-
a selection threshold. An increaseinlowers the threshold tions of sequences.
so that sequences with small blndlng energies are also ||ke|y Let ag=eq —&q. In our model, we make an approxima_
to be selected. Practically, the chemical potentiadlepends  tjon for the total binding energy by ignoring the smaller part
on the environment of DNA-protein binding. It can be con-f o or ¢, in Eg. Eg thus has the following form:
trolled by the number of available proteins and the choice of
the binding buffer.

We assume thaEg consists of two parts, i.e., specific e if es>eg
binding energyes and nonspecific binding energy: Es= s s (3)

€0 |f 85<80.

ES:85+80. (2)

This assumption is supported by previous experimental find-

e is determined by the binding details of the sequeite . Careful . s witla h d that th
Mnt-repressor, and therefore depends of specific nucleotidd§9ds- ~aretul expeniments witac-repressor showed that e
sequence-specific binding energy can be replaced by the

b; in S g4 is independent of specific sequences, which rep- e . . -
resents the contribution of the Coulomb interaction to theONSPecific energy, if the DNA sequence is sufficiently far

DNA-protein-binding affinity. It is identical for any possible from the besiS* sequenc¢13-13. By taking Eq.(3), we
sequence of bases, and is a constant in our model. As it had'ave taken into account the effect of nonspecific binding
been previously proved to be a good approximation for thedffinity, which has been ignored in the model of Ref]. In
Mnt-repressor systenil?], we further assume that each the selection probability, Eq1), we have three parameters:
nucleotide in the sequence contributes to the specific bindings» @, andu. Denoteue =& + u, two independent pa-
energye independently, i-e-«?s:EiL:lei- wheres,, is the rametersag and Mets are left in the selection probability,
energy contribution of the nucleotidg in the S sequence. which has the following form:

Practically, the binding energy, cannot be determined di-

rectly in experiment. However, if we appoint arbitrarily a ' ' ' ' '
sequence of nucleotideS* =bjb%---b as a reference,

then the discrepancy in binding energy $f from any se- 10°%- .
quenceS, that is, e« —es=as With a;=3_,a and a;

=&pr—£p, can be measured experimentally by the ap- aa)

proach of point mutation[11]. An equivalent form of 10*4 .

the specific binding energys can then be written asg
=ss*—aS=E:‘:1(sb*—ai). In our model, we choose the
|

DNA sequence that has the highest binding energy 10° . , : i
to Mntrepressor as the reference. It readS* 0 10 20 30 40
=GGGTCCACGGTGGACCC. This sequence is symmetri- 3, (k1)

cal about the central basg) =G in the sense that base G FIG. 1. The histogram of energy landscafi¢a.) calculated

matiches base C and base A matches base T. Actually, réffom Taple | (the squarésand its coarse graim(m) calculated

ence sequenc8* is the target of then vitro evolution of  fom Eq. (12) (solid line). Q(as) andw(m) represent the number
Mnt-repressor. For this reference, the experimentally meaof possible types of sequences whase(refer to the text for its

sured energy discrepaney for all possible base matches of definition fall in the rangd as, as+Aag]. Aa, for the histograms

b with s; are listed in Table [11]. For all possible types of is 0.7&gT.
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p 1 10° 1.0
as— perf| If as<ap
1+ ex;{ kB—T) n 10° 05a
P(S,u)={ 1 4)
. 10° 0.0
14 ao— Merr| If as=ao. 0
\ ex KaT 10 1.0
As the Appendix showsyei1=KgT IN(KstCy5), WhereK g« is n 10° 05a
the binding constant of the best sequeSteandcy,; is the
concentration of freévint-repressor in the equilibrium state. 10" seeeeet 0.0
K? is affected by the reaction temperatirend pH value, 0 4 8 12 16 4 10 100
S g . 1 1 . r (bases) t (cycles)
and has a magnitude typical of 40 1 [16]. ¢y is deter-
mined bycy ¢+ 2sP(S,u)Cs=Cy¢, Wherecg, andcy, are, FIG. 2. The time evolution of distance distributiongr) for

respectively, the concentration of total DNA ardnt-  typical simulation runs that exhibit the phenomenon of crossover
repressor. The dependencecgf; on cg,Cy¢, andK? isin  (a) and noncrossover). The symboldT, *, ¢, +, and® repre-
fact complicated and is not the interest of this study. Wesent the time=0, 1, 2, 3, and 4, respectively. (@), the distribu-
simply assumecy;~cy;, Which is achieved whercy, tion n(r) att=3 makes a jump to the state bE4; while in the
>3 qCs;. Suppose the reactive buffer and the number of totanoncrossover case), n(r) evolves smoothlyb) and(d) depict the
Mnt-repressor remain unchanged during the experiment,  ime dependence of the mean selection probabilignd its grow-
is a constant in the evolution process. PracticaMpnt- ing rate,B_for the runs of(a) and(c), respectively. The crossover is
repressor concentration can vary from1bM to 1077 M best manlfest.ed by the peak of the curve }R)rOther control pa-
[11,16], with KE~10" M~ [16], the correspondingse;; ?T&te;sf areiuer =0, a=7kgT for (3 and (b); per=0, 2
=40kgT for (c) and(d).
ranges from O to WLT.

Using the above model, we carried out stochastic simula-_
tions of thein vitro evolution. Except otherwise stated, the =GGGTCCACGGTGGACCC sequence. We count the num-

ber of nucleotides ir8 which are different fron5* and de-
I t h the followMe: 10°, L L .
Eigevsirigﬁ e;’];\ﬂig gﬁzntea;pereatﬁrg\:/vvagﬁga at Note it withr. The state of the population at the end tof

: L . . les of duplication-mutation-selection can be roughly char-
300 K which was typical in real experiment. In the simula- Y*'®" X Y .
yp b acterized by the distance distributiolir) as a function of

tion, we first generated £0random DNA sequences of 17 th lati d ibes h h
nucleotides, with each base having an equal probability to b e populationn(r) describes how many sequences have

; e the distance to theS* sequence in the population. Second
A,C,G, or T. The DNA population was then amplified 1000 . o '
times (10 cycles of “PCR"). At each run of duplication, we we denote the fraction tha&type DNA occupies in the

generated a random number which is uniformly distributeopopUIation at timd Wi'.[h f(S’t.)‘ Also, fqr a bettgr character-
in [0,1] for each nucleotide in all DNA. If the number is less ization of the population during evolution, we introduet)

than vy, then a mutation takes place on this nucleotide; thednd B(1):

nucleotide was altered to other three different nucleotides

with equal probability. Otherwise, the nucleotide was kept a(t)=> P(S,u)f(St),
unchanged. After 10 cycles of PCR, a selection was made S

with each available sequence being selected according to the

selection probability, Eq(4). In order to recover the initial _a(t)
population, 16 sequences were random sampled from the (t)= a(t—1)"
selected pool. With a proper washing condition, this process

can be realized in experiments by using a part of selected(t) is the averaged binding probability of the population,
samples instead of all selceted samples. We investigated thehile 5(t) is a measure of the changing rate of the average
dynamics ofin vitro evolution by carrying out the above binding ability, becaus@(t) — 1 is exactly the changing rate

©)

=

duplication-and-selection processes numerically. of a(t).
By adjusting the parameters @f.;; anda,, we observe
Il SIMULATION two types of dynamics: crossover and noncorssover. Typical

crossover and non-crossover processes are shown in Figs.
We scan the parameteag in [4kgT,40kgT] and ey in 2(a) and Zc), respectively. They show the distance distribu-
[0,1gT]. Starting from a population of random sequencestion n(r) of the population at different evolution tinteOne
the evolution always has a single destination: It always connotes that in a crossover procébgy. 2(@)], there is a sudden
verges to the state in which most DNAs in the population areehange of the distribution(r) during the evolution, reveal-
of S*-type sequence. ing a sudden fast decrease in the average distance in the
To characterize the dynamics of the DNA population dur-population. On the other hand, in a noncrossover case, the
ing evolution, we need to define a few parameters. First, thélistance distributiom(r) evolves steadily. Our calculation
distance of a sequenc8=bib,---b,; to the final S* shows that withu.¢s in the range of 0 and 1@T, if ag
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FIG. 3. The contour lines of characteristic crossover tia
the space of control parameterss;—ay obtained from simulations
(@ and theory(b). (c) and (d) show the dependence of on a, FIG. 4. Typical examples of two qualitatively different simula-
(with perr=0) and s (With ag=7kgT), respectively. Circles tion runs found in stochastic simulatioftee solid and dashed lines
represent simulations and solid lines represent theory. The theoreh (a) and(b)]. The dependence @ on the standard deviatio$ of
ical result is produced by calculatings(t)/dt|; =0. the selection probability that follows Fisher’s theorem of natural

selection(c). The simulation resul(squaresagrees very well with
the function B=1+ &2 (solid line). Parametersuq;;=0 and ag
<12kgT, a crossover takes place; #,=14kgT, smooth =7kgT.
evolution  (noncrossover  occurs; and if ap
e[12kgT,14kgT], the occurrence of the crossover strongly
depends on the chemical potentigl;;: the crossover takes time when the peak df~ B(t) curve appears, is found to be
place only if ue¢¢ is larger than a certain lower limit value affected by both parameters @f ¢y and ag. Usually, for
that is determined by the value af. Figure Zb) shows the certain values ofie¢; anda,, different simulation runs have

corresponding time dependencesagf) and3(t) in a cross-  different values ot,. We thus calculate the mean.J of t,

over case. At=0, the initial random DNA population has g a number of simulation runs. The dependence_COtDn

an average distance of 13.0. Durityg1 and 2,3(t) grows petr @nday is summarized in Fig. @), where the contour

very fast and the fraction of the sequence having four di1‘fer-Iines of L. in -a. space are plotted. The contour line of
ent bases t&* sequence is found to grow abruptly in the — c IN Merr@o SP P '

population. However, these sequences are still in a minorityc=2 distinguishes crossover and noncrossover evolution
(less than 1% in the populatiprAt t=3, they become quite processes. Crossover appeart;#2; it becomes noncross-
considerable in numbearound 30% in the populationin  over if t,=1. The figure indicates that. is a decreasing
the meantime, the average distance drops to 10.0. After thiginction of a, and an increasing function gf.¢. Figures
event, B(t) undergoes a sudden drop whil€t) still grows  3(c) (circles and 3d) (circles clearly demonstrate such two
steadily. This crossover process, best demonstrated by thsfects.
peak of thet~ S(t) curve, can be found in a large range of  From different simulation runs carried out with various
parameters. The result of the simulation is consistent with thealues ofu.; anday, we recognized two qualitatively dif-
real DNAin vitro evolution experiments of Dubertret al.  ferent types of trajectories. As shown in Figay the evolu-
[10]. Their experiment revealed an abrupt decrease in théon path of the solid line is a of gradual changing trajectory,
average distance at the end of 5 cycles of PCR-mutatiotypically found in our simulations. It indicates that the aver-
selection, and the average distance drops suddenly from 9 tige selection probability(t) in the population is a steady
3. In contrast with Figs. @) and 2b), Figs. 4c) and Zd) growing function of time. The other type of typical run is
show a noncrossover situation wheg=40kgT. In this  represented by the dashed line in Fi¢g)41t shows that the
case,B(t) decreases monotonously without any abrupt beevolution process is divided into three slowly changing pla-
havior. Since sequenc& has the largest selection probabil- nar stages alternated with two fast growing stages. A fast
ity P(S*,u), the final evolution result is still a population of growth in a(t) is typically preceded by a stagnant process.
S* sequence, so that(t)/P(S*,u) always approaches to We calculated the time dependencedff), i.e., the relative
1.0 as time proceeds. standard deviation oP(S,u) at timet in the population.
The characteristic time of crossovey, defined as the Figure 4b) shows the curves af(t) for the two typical runs
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TABLE 1l. The standard deviatiorD of the mean selection
probability @ in the ensemble at a few sampled timBs. denotes
the case when the ensemble evolves from different random initial
DNA populations andD, is the situation where the ensemble
evolves from an identical initial population. Parameters are the
same with Fig. 5.

1.0

o 0.5

0.0 D\t 0 2 5 10 20 100
t (cycles) D, 0.000 16 2.6 083 035 0.16 0.016
0.0 0.0096 0.28 0.13 0.10 0.0002

FIG. 5. Forty evolution trajectories selected arbitrarily from an
ensemble of 200 simulation runs. They evolve from 40 different
random initial DNA populationga) and from an identical initial

population(b), respectively. Parameters are the same as in Fig. 4..yere also simulated from a completely identical initial ran-
dom DNA population. Figure () gives the results. Trajec-
tories in the figure are still dispersed, but the extent is much

in Fig. 4(a). Both are drastically undulant curves that exhibit less drastic than that of F|g.(@ Again no typica| passage

frequent convergence and divergence in the population. Thigxists. From Figs. @) and §b), we deduce that the disper-

is the typical dynamical pattern we find in tive vitro evo-  gjon degree in the evolution trajectories comes from the di-

lution processes. . . . versity of initial conditions and the randomicity of DNA mu-

Biologically speaking, the selection probabil®(S, 1) IS tations. The dispersion af(t) for this case is also listed in
a measure of fithess of an organism to the environment, a ble 1l (D,).
a represents the mean fitness of the population. The standar We finally check the effects of system sidéand the

deviations of « in the population is actually an indicator of mutation ratevy. To characterize a simulation run, the evo-

the diversity in the population. As early as over 90 years ago, .. ! . .
Fisher discovered a fundamental theorem of natural selectiolaﬁJtlon time t defined as the number of evolution cycles

in evolutionary biologyThe rate of increase in fitness of any heeded for 900./0 DNASs in the population to become th? target
organism at any time is equal to its genetic variance in fit.S* sequence, |s_calculated. At a parameter configuration, the
ness at any timgl7]. This biological law has been recovered mean ofte, i.e., te, is calculated for a number of simulation
in our numerical simulations oin vitro evolution. Figure runs. Figure 63 shows the effects dfl ont,. One observes
4(c) shows that the changing rate @fat any instance of time  that the size effect is significant whéhis small. There is a
is just the square of the diversit§ or the variance of the characteristic siz&l., below whicht, blows up. The reason
fitness. The open squares in the figure are results of simulas that when the system is too small, the probability for se-
tion and the solid line represents the functign-1+ &2. quences witha;<a, to appear in an initial population is
They agree very well. slim, and the system has to wait a long time for these se-
We now fix the valuegioss=0 anday=7kgT and inves- quences to be produced through a small mutation rate. The
tigate the statistical properties of an ensemble of simulationy—t_ dependence has a long tail angd converges at the

runs. Two-hundred d|ff_erent _reahzatlons .Of _3|mu|at|0n_s arimit of large system size. The effect of mutation ratetgris
conducted. For each simulation run, the initial population is

prepared by randomly selectirlg sequences from the pool depicted in Fig. &). At small values ofi, the system usu-
of 41 DNAs, Figure a) shows the evolution trajectories of ally needs over several hundred or even higher numbers of

the ensemble in terms ai(t). The paths start from a smal duplication-mutation-selection cycles in order to attain to the
. ) . ) P . ; S*-sequence-dominant state. However, the effect of the mu-
regime that lies a little above zero inand terminate with a

convergence tar=1. During their evolution processes, the tation ratew, is not so significant whem,>10"" in the
VETge S 9 ton p ' range of parameters that we checked.

trajectories distribute, however, very diversely. There does

not exist any typical evolution passage where trajectories

keep close together during evolution. To complete the jour- 4007 y - 10°
ney from an initial condition, a quick run requires only about a b
ten duplication-mutation-selection cycles in order to have 8001 ¢ 101
90% of the DNAs in the population to & -type sequence, [ © K
. . g 200 2 6
while a slow run needs about 100 cycles to cover the journey. g : g |l
The dispersionD(t) or standard deviation ok(t) in the 100 %, |
ensemble at a few sampled times are listed in Tabl®}H)( ] o
D(t) has a small value of 0.00016ta¢ 0, indicating that the 0L — ~ 10° - - 4
trajectories keep close initially. At=2, D(t) grows to 2.6 10 1‘:\‘ 10 100 Jo0 o

and the paths have been randomly dispersed. Rref to
100, D(t) decreases gradually to a very small value and the FIG. 6. Effects of the system siZa) and the mutation rate,
system gradually converges to the optirB4l sequence. For (b) on the average evolution tirg. Parameterswo=10* for (a)
the purpose of comparison, the ensemble of evolution rungndN=1C° for (b). Other parameters are the same as in Fig. 4.
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IV. ANALYSIS 10° . 10*

We now give a theoretical analysis of the evolution dy-
namics of our model. In factN=10° means that the best
sequenceS* has a small probability of I0f to appear in B 10
starting pool. For simplicity, we argue thit=10° is suffi-
ciently large to contain sequences with different energy level,
and small mutation ratey has insignificant influence on the . . .
population distribution of the DNA pool in the first several 10% e o 0t = o
cycles. Thus we consider the limity)=0 andN =». We t (cycles) t (cycles)
denote the summatiojg];=2>s9(S)f(S,t), whereg(S) is
an arbitrary function oBsequence and the sum is carried out  FIG. 7. The~t correspondence from simulati¢dasheg and
over all possible types of sequences in a populdtiefer to theory (solid). Theoret_ical_result_inia) also manifests thg crossover
the text that precedes E¢p) for f(S,t)]. Since there are phenomenon four_wd in simulations. The results of simulation are
only selections and no mutation takes place in the evolutiorcalculated by taking an average over 200 runs. Paramgigss:
the sequence distribution functioi(S,t+1) at timet+1 0 8= 7KgT for (@ per1=0, ay=40kgT for (b). Other param-
can be calculated from the distributidgS,t) at t:

——theory
------- simulation

——theory

18107, ------- simulation |

eters are the same as in Fig. 4.

f(St+1)= Mf(s,t)_ (6) data in Table I. We divide all the types of free energiges

[Pl (a;=ep+—ep,) contributed possibly by a nucleotide in a se-
quenceS uniformly into four classesa; can only take values
of 0, €, 2¢, or 3e. In accordance with data in Table I, we
take e=0.7&gT. For a sequencs§ that hasl, nucleotides
with a;=0, |, nucleotides witha;=¢, |, nucleotides with
£(S,0). ) a;=2e¢, andl; nucleotides witha;=3e, while Io+1,+1,
To +13=L. The sequencé& thus has the free energs=me
=(l,+2l,+3l3)e. The number of all possible types of se-
The forms ofa(t) andB(t) defined in Eq(5) can be readily quences that satisfg;=me can be calculated to be
obtained from Eq(7),

From the recurrence formul&(S,t) can be expressed in the
initial distribution f(S,0),

[P(S,u)]'

f(St)= o

(i3] minfL—1 [(n-319/2) 315-2l
! m)= CPC2, Cl 8 "2
:m 8 o(m) |3§=:0 I2=max(gn:fL72I3) P
[P -

a(t)

where the brackef ] is the operation of taking the integer
] (9) part of a real number. The landscapém) is the approxi-
([P'o)? mation of Q) (as). As depicted in Fig. 1, the solid curve for
w(m) agrees well with the squares of experimental data for
Initially the fraction that any type of sequen8mccupies in  Q(ay).
a population is uniform since the system size is infinite, and By virtue of Eqgs.(10) and(11), B(t) can be finally com-
we havef(S,0)=1/4". From the selection probability, Eq. puted. By adjusting the parameters;; anda,, we find that

Cat)  [PUHPUY,
B= gy

(4), we have the crossover phenomenon observed in our simulations
shows up with small values af,. Figure 7a) demonstrates
1 Q(a)A such an example. The solid curve is the theoretical result,
t (ag)Aag > T
[P ]0=; 2 T and the dashed line is calculated by averagingn a bound
ag<ag

of simulation runs. The characteristic crossover tiire, t.,
the time the peak locatepredicted by theory also agrees
well with the simulations. Figure(B) depicts the case of the

1 %
+ex K

+ E M . (10) situation without crossover whes, takes large valuesa(,
850 | 1 o B0 >12kgT). The crossover timg, can be also determined by
A 12kgT). Th i be also d ined b
P T dB(t)/t], =0. On the basis of Eqg9)~(11), the depen-

dence oft, on ues; anday was calculated, as shown in Fig.

Apparently, the meapP'], are determined by the landscape 3(b). The contour lines of. qualitatively agree with simula-
Q(ag) and parametera,. )(a) is actually the energy den- tions[Fig. 3(a)]. The solid lines of theoretical prediction in
sity distribution for the initial population. The sum in Eqg. Figs. 3c) and 3d) are consistent with numerical simulations.
(10) consists of two partsa<a, anda=a,. Fisher’'s theorem of natural selection can be readily de-

In order to obtain an analytical form f@(t), the experi- rived with vo=0. We consider that the population is large
mental landscape shown in Fig. 1 should be approximatednough. At timet, the fraction of sequencgin the popula-
analytically. We make a coarse-grain for the experimentation is proportional toP(S,u)f(S,t—1), that is,
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f(S,t)=kP(S,u)f(St—1), (12 —eo~kgTIn(I'), wherel is the size of genome that contains
the DNA sequence. This relation was proved to be correct for
where « is the coefficient. We integrate both sides of theall cases where nonspecific energy has been measured ex-

above equation with respect ®and arrive at perimentally. In this lightEs« — e~ 16kgT for Mnt because
the Samonellagenome size is=5x 10°. Together withE g«
~25kgT for K« ~10'M 1 [16], one can calculate thai,
P(Su)f(St—1)= t—1)= f(St)=1. B s ’ )
<% PSwI( )=ra(t-1)=3, f(S1) = e —50=Eer—260=2(Eex —80) — Er ~7ksT, which

(13 guantitatively agrees with our prediction. Whag is prop-
erly set, we showed that the crossover can take place in the

We havex=1/a(t—1) and get the expression f6(S,t), first few evolution cycles, as was observed by experiment
[10], with a strong selection force that can be quantitatively

P(S,u)f(St—1) controlled by protein concentration.
f(St)= ai=1) (14 With an ensemble of simulation runs, it was revealed that

the evolution trajectories are drastically dispersed and there
o " ~do not exist typical evolution passages where the trajectories
Therefore the mean binding probability takes the followingkeep close together. We thus speculate that diversification

form: must be the key of the dynamics of evolution. With a coarse-
grained simplification for the experimental data of specific

E P(S,1)2f(S,t—1) binding energy, we obtained a simplified energy landscape

S for the system. Based on this simplification and the assump-

a(t)ZES P(Smf(SH= a(t—1) : tion that small mutations do not have a major effect on the

(15) population distribution of the DNA pool, Fisher’s theorem of
natural selection, which states that the growth rate of fitness
From the expression af(t), it is easy to prove that of an organism is exactly its variance of fitness, is verified
and put in an analytical expressifag. (16)]. This analytical

formula is quantitatively consistent with the result of the
— w(t—1)12 _
25; [P(S;p) —a(t=D)JF(S,t=1) computer simulation.

B(t)=1+ a(—1)2
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Fisher's theorem of natural selection. Science and Technology, China.

V. DISCUSSION
APPENDIX

We have investigated the dynamics of competitive DNA
in vitro evolution with Mnt-repressor numerically and ana- . -
lytically. The selection strength of the chemical potential™'™ state, we haveKs=Csp/(CsiCur), whereKs is the
Lot IS regarded as an invariant during the evolution procesNding constant of S¢sy, Cs¢, andcy; are, respectively,

which is a practical case when the protein molecules ard'® concentration of bindingsS, free S and free Mnt-

excessively present. Based on the experimental data for t%%iriﬁz(}g”\gﬁthc%/ Csi=KsCwy, the selection probability

sequence-specific binding energy and the correspondin
landscape, the evolution process were simulated. By chang-
ing the selection strength.ss within the practical range of
[0,1kgT], we demonstrated that the crossover process ob- P(S,u)= = —
served in the experiment0] can take place only whem, is CsttCsb 1+ (KsCumr)
smaller than 1KgT. In fact, a small value o, represents a

case where nonspecific binding enewgyis dominant. With  sing the relatiork s expEs/ksT), we have
large ay, the contribution of nonspecific energy can be ig-

nored, only specific energy takes effect. These results reveal

that the nonspecific energy is responsible for the crossover K exy{ __as) if ac<a
phenomenon. Qualitatively speaking, the bigger the portion Es—Es st Kg S0
of initial sequences with nonspecific binding energy, the Ks= KSkeXF<?)= —a
easier the occurrence of crossover. It suggests that in real B K ex —O) if ag=a,.
experiments, the energy discrepancy of nonspecific energy

g to the best specific energyt might be at most 14T.

We compare this magnitude evaluation with previous predic-

tion [18]. In Ref. [18], Gerlandet al. proposed thatE g« So that the final form oP(S,u) is

When the reactior5+ MR=S— MR attains the equilib-

Csp 1

(A1)

031903-7



YANG, WANG, AND OUYANG

1

PHYSICAL REVIEW E 68, 031903 (2003

1

1+(Ksk 'CMf)_leXF<kB_T

a-S ) F{a.s_ kBTIn(Ks*CMf)) |f as<a0
1+ex

kgT
P(S,u)= . L (A3)
_ ag ao—kgTIn(Ks-cyp)| if as=ag
1+ (Ker-C 1exr<—) 1+exr<
{ ( S* Mf) kBT kBT

in which kgT In(Kg«Cy¢) is exactly uess Of EQ. (4).
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